\(\int \frac {x^3 (A+B x+C x^2)}{a+b x^2+c x^4} \, dx\) [22]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 278 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {B x}{c}+\frac {C x^2}{2 c}-\frac {B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (A b c-b^2 C+2 a c C\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{4 c^2} \]

[Out]

B*x/c+1/2*C*x^2/c+1/4*(A*c-C*b)*ln(c*x^4+b*x^2+a)/c^2+1/2*(A*b*c+2*C*a*c-C*b^2)*arctanh((2*c*x^2+b)/(-4*a*c+b^
2)^(1/2))/c^2/(-4*a*c+b^2)^(1/2)-1/2*B*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b+(2*a*c-b^2)/(
-4*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/2*B*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)
^(1/2))^(1/2))*(b+(-2*a*c+b^2)/(-4*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {1676, 1265, 787, 648, 632, 212, 642, 12, 1136, 1180, 211} \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {\left (2 a c C+A b c+b^2 (-C)\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{4 c^2}-\frac {B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {B x}{c}+\frac {C x^2}{2 c} \]

[In]

Int[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

(B*x)/c + (C*x^2)/(2*c) - (B*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^
2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (B*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[
(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((A*b*c - b^
2*C + 2*a*c*C)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c^2*Sqrt[b^2 - 4*a*c]) + ((A*c - b*C)*Log[a + b*x^
2 + c*x^4])/(4*c^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 787

Int[(((d_.) + (e_.)*(x_))*((f_) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*g*(x/c
), x] + Dist[1/c, Int[(c*d*f - a*e*g + (c*e*f + c*d*g - b*e*g)*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c,
 d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1136

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((a + b*
x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), x] - Dist[d^4/(c*(m + 4*p + 1)), Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1676

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
 k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B x^4}{a+b x^2+c x^4} \, dx+\int \frac {x^3 \left (A+C x^2\right )}{a+b x^2+c x^4} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x (A+C x)}{a+b x+c x^2} \, dx,x,x^2\right )+B \int \frac {x^4}{a+b x^2+c x^4} \, dx \\ & = \frac {B x}{c}+\frac {C x^2}{2 c}+\frac {\text {Subst}\left (\int \frac {-a C+(A c-b C) x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 c}-\frac {B \int \frac {a+b x^2}{a+b x^2+c x^4} \, dx}{c} \\ & = \frac {B x}{c}+\frac {C x^2}{2 c}-\frac {\left (B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}-\frac {\left (B \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}+\frac {(A c-b C) \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2}-\frac {\left (A b c-b^2 C+2 a c C\right ) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2} \\ & = \frac {B x}{c}+\frac {C x^2}{2 c}-\frac {B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{4 c^2}+\frac {\left (A b c-b^2 C+2 a c C\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c^2} \\ & = \frac {B x}{c}+\frac {C x^2}{2 c}-\frac {B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (A b c-b^2 C+2 a c C\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{4 c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.36 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {4 B c x+2 c C x^2-\frac {2 \sqrt {2} B \sqrt {c} \left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} B \sqrt {c} \left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (A c \left (-b+\sqrt {b^2-4 a c}\right )+\left (b^2-2 a c-b \sqrt {b^2-4 a c}\right ) C\right ) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\sqrt {b^2-4 a c}}-\frac {\left (-A c \left (b+\sqrt {b^2-4 a c}\right )+\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) C\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 c^2} \]

[In]

Integrate[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

(4*B*c*x + 2*c*C*x^2 - (2*Sqrt[2]*B*Sqrt[c]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sq
rt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2*Sqrt[2]*B*Sqrt[c]*(b^2 - 2*a*
c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b +
Sqrt[b^2 - 4*a*c]]) + ((A*c*(-b + Sqrt[b^2 - 4*a*c]) + (b^2 - 2*a*c - b*Sqrt[b^2 - 4*a*c])*C)*Log[-b + Sqrt[b^
2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] - ((-(A*c*(b + Sqrt[b^2 - 4*a*c])) + (b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*
c])*C)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^2)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.31

method result size
risch \(\frac {C \,x^{2}}{2 c}+\frac {B x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{3} \left (A c -C b \right )-b B \,\textit {\_R}^{2}-C a \textit {\_R} -B a \right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{2 c}\) \(86\)
default \(\frac {\frac {1}{2} C \,x^{2}+B x}{c}+\frac {\frac {\left (-A b c \sqrt {-4 a c +b^{2}}+4 A a \,c^{2}-A \,b^{2} c -2 C \sqrt {-4 a c +b^{2}}\, a c +C \sqrt {-4 a c +b^{2}}\, b^{2}-4 C a b c +C \,b^{3}\right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (-2 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}-4 B a b c +B \,b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{c \left (4 a c -b^{2}\right )}+\frac {-\frac {\left (-A b c \sqrt {-4 a c +b^{2}}-4 A a \,c^{2}+A \,b^{2} c -2 C \sqrt {-4 a c +b^{2}}\, a c +C \sqrt {-4 a c +b^{2}}\, b^{2}+4 C a b c -C \,b^{3}\right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (-2 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}+4 B a b c -B \,b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{c \left (4 a c -b^{2}\right )}\) \(419\)

[In]

int(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/2*C*x^2/c+B*x/c+1/2/c*sum((_R^3*(A*c-C*b)-b*B*_R^2-C*a*_R-B*a)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^
2*b+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 61.66 (sec) , antiderivative size = 1329593, normalized size of antiderivative = 4782.71 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

[In]

integrate(x**3*(C*x**2+B*x+A)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\int { \frac {{\left (C x^{2} + B x + A\right )} x^{3}}{c x^{4} + b x^{2} + a} \,d x } \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

1/2*(C*x^2 + 2*B*x)/c + integrate(-(B*b*x^2 + (C*b - A*c)*x^3 + C*a*x + B*a)/(c*x^4 + b*x^2 + a), x)/c

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3519 vs. \(2 (232) = 464\).

Time = 1.32 (sec) , antiderivative size = 3519, normalized size of antiderivative = 12.66 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

-1/4*(C*b - A*c)*log(abs(c*x^4 + b*x^2 + a))/c^2 + 1/2*(C*c*x^2 + 2*B*c*x)/c^2 + 1/8*((2*b^5*c^2 - 16*a*b^3*c^
3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c -
 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
 + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*
c^3)*B*c^2 - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*
a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4
*a*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2
- 4*a*c)*a*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*B*abs(c) - (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*
a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 -
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*B)*arctan(2*sqrt(
1/2)*x/sqrt((b*c^5 + sqrt(b^2*c^10 - 4*a*c^11))/c^6))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 +
 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) + 1/8*((2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2
- 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b
^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b
*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 -
sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqr
t(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*B*c^2 - 2*(sqrt(2)*sqrt(b*c - s
qrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c - s
qrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 16*a^2*b^2*c^4
- 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 32*a^3*c^5 - 2*(b^2 - 4*a*c)*a*b^2*c^3 + 8*(b^2 - 4*a*c)
*a^2*c^4)*B*abs(c) - (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b
^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a
*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*
c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*B)*arctan(2*sqrt(1/2)*x/sqrt((b*c^5 - sqrt(b^2*c^10 -
 4*a*c^11))/c^6))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6
)*c^2) - 1/16*((b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 - (b^5*
c - 8*a*b^3*c^2 - 2*b^4*c^2 + 16*a^2*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4)*sqrt(b^2 - 4*a*c))*A*abs(c) -
(b^7 - 10*a*b^5*c - 2*b^6*c + 32*a^2*b^3*c^2 + 12*a*b^4*c^2 + b^5*c^2 - 32*a^3*b*c^3 - 16*a^2*b^2*c^3 - 6*a*b^
3*c^3 + 8*a^2*b*c^4 + (b^6 - 10*a*b^4*c - 2*b^5*c + 32*a^2*b^2*c^2 + 12*a*b^3*c^2 + b^4*c^2 - 32*a^3*c^3 - 16*
a^2*b*c^3 - 6*a*b^2*c^3 + 8*a^2*c^4)*sqrt(b^2 - 4*a*c))*C*abs(c) - (b^6*c^2 - 8*a*b^4*c^3 - 2*b^5*c^3 + 16*a^2
*b^2*c^4 + 8*a*b^3*c^4 + b^4*c^4 - 4*a*b^2*c^5 + (b^5*c^2 - 4*a*b^3*c^3 - 2*b^4*c^3 + b^3*c^4)*sqrt(b^2 - 4*a*
c))*A + (b^7*c - 10*a*b^5*c^2 - 2*b^6*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3 + b^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^
2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^5 + (b^6*c - 6*a*b^4*c^2 - 2*b^5*c^2 + 8*a^2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 -
 2*a*b^2*c^4)*sqrt(b^2 - 4*a*c))*C)*log(x^2 + 1/2*(b*c^5 + sqrt(b^2*c^10 - 4*a*c^11))/c^6)/((a*b^4*c - 8*a^2*b
^2*c^2 - 2*a*b^3*c^2 + 16*a^3*c^3 + 8*a^2*b*c^3 + a*b^2*c^3 - 4*a^2*c^4)*c^2*abs(c)) - 1/16*((b^6*c - 8*a*b^4*
c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 8*a*b^3*c^2 - 2*b^4*c^2 + 16
*a^2*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4)*sqrt(b^2 - 4*a*c))*A*abs(c) - (b^7 - 10*a*b^5*c - 2*b^6*c + 32
*a^2*b^3*c^2 + 12*a*b^4*c^2 + b^5*c^2 - 32*a^3*b*c^3 - 16*a^2*b^2*c^3 - 6*a*b^3*c^3 + 8*a^2*b*c^4 - (b^6 - 10*
a*b^4*c - 2*b^5*c + 32*a^2*b^2*c^2 + 12*a*b^3*c^2 + b^4*c^2 - 32*a^3*c^3 - 16*a^2*b*c^3 - 6*a*b^2*c^3 + 8*a^2*
c^4)*sqrt(b^2 - 4*a*c))*C*abs(c) + (b^6*c^2 - 8*a*b^4*c^3 - 2*b^5*c^3 + 16*a^2*b^2*c^4 + 8*a*b^3*c^4 + b^4*c^4
 - 4*a*b^2*c^5 + (b^5*c^2 - 4*a*b^3*c^3 - 2*b^4*c^3 + b^3*c^4)*sqrt(b^2 - 4*a*c))*A - (b^7*c - 10*a*b^5*c^2 -
2*b^6*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3 + b^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^
5 - (b^6*c - 6*a*b^4*c^2 - 2*b^5*c^2 + 8*a^2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 - 2*a*b^2*c^4)*sqrt(b^2 - 4*a*c))
*C)*log(x^2 + 1/2*(b*c^5 - sqrt(b^2*c^10 - 4*a*c^11))/c^6)/((a*b^4*c - 8*a^2*b^2*c^2 - 2*a*b^3*c^2 + 16*a^3*c^
3 + 8*a^2*b*c^3 + a*b^2*c^3 - 4*a^2*c^4)*c^2*abs(c))

Mupad [B] (verification not implemented)

Time = 8.37 (sec) , antiderivative size = 2696, normalized size of antiderivative = 9.70 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

int((x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x)

[Out]

symsum(log((B^3*a^2*b*c - B*C^2*a^3*c + A^2*B*a^2*c^2 + B*C^2*a^2*b^2 - 2*A*B*C*a^2*b*c)/c^2 - root(128*a*b^2*
c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2*c^6*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*b^3*c^3*z^3 - 128*A*a*b^2*c^4*z^3 -
 16*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b*c^3*z^2 - 72*A*C*a*b^3*c^2*z^2 + 8*A*
C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 28*B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^3*z^2 + 32*C^2*a*b^4*c*z^2 - 56*C^2
*a^2*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2 - 96*A^2*a^2*c^4*z^2 - 4*C^2*b^6*z
^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*a^2*b*c^2*z + 12*A*C^2*a^2*b^2*c*z + 16*A*B^2*a^2*b*c^2*z + 8*A^2*C*a*b^3*
c*z - 4*A*B^2*a*b^3*c*z - 4*A*C^2*a*b^4*z - 4*A^3*a*b^2*c^2*z - 16*B^2*C*a^3*c^2*z + 16*A*C^2*a^3*c^2*z - 16*C
^3*a^3*b*c*z + 4*C^3*a^2*b^3*z + 16*A^3*a^2*c^3*z + 2*A^3*C*a^2*b*c + 4*A*B^2*C*a^3*c - 2*A^2*C^2*a^3*c + 2*A*
C^3*a^3*b - A^2*B^2*a^2*b*c - B^2*C^2*a^3*b - A^2*C^2*a^2*b^2 - A^4*a^2*c^2 - B^4*a^3*c - C^4*a^4, z, k)*(root
(128*a*b^2*c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2*c^6*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*b^3*c^3*z^3 - 128*A*a*b^
2*c^4*z^3 - 16*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b*c^3*z^2 - 72*A*C*a*b^3*c^2
*z^2 + 8*A*C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 28*B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^3*z^2 + 32*C^2*a*b^4*c*z
^2 - 56*C^2*a^2*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2 - 96*A^2*a^2*c^4*z^2 -
4*C^2*b^6*z^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*a^2*b*c^2*z + 12*A*C^2*a^2*b^2*c*z + 16*A*B^2*a^2*b*c^2*z + 8*A
^2*C*a*b^3*c*z - 4*A*B^2*a*b^3*c*z - 4*A*C^2*a*b^4*z - 4*A^3*a*b^2*c^2*z - 16*B^2*C*a^3*c^2*z + 16*A*C^2*a^3*c
^2*z - 16*C^3*a^3*b*c*z + 4*C^3*a^2*b^3*z + 16*A^3*a^2*c^3*z + 2*A^3*C*a^2*b*c + 4*A*B^2*C*a^3*c - 2*A^2*C^2*a
^3*c + 2*A*C^3*a^3*b - A^2*B^2*a^2*b*c - B^2*C^2*a^3*b - A^2*C^2*a^2*b^2 - A^4*a^2*c^2 - B^4*a^3*c - C^4*a^4,
z, k)*((x*(16*C*a^2*c^4 - 8*A*b^3*c^3 + 8*C*b^4*c^2 + 32*A*a*b*c^4 - 36*C*a*b^2*c^3))/c^2 - (16*B*a^2*c^4 - 4*
B*a*b^2*c^3)/c^2 + (root(128*a*b^2*c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2*c^6*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*
b^3*c^3*z^3 - 128*A*a*b^2*c^4*z^3 - 16*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b*c^
3*z^2 - 72*A*C*a*b^3*c^2*z^2 + 8*A*C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 28*B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^
3*z^2 + 32*C^2*a*b^4*c*z^2 - 56*C^2*a^2*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2
 - 96*A^2*a^2*c^4*z^2 - 4*C^2*b^6*z^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*a^2*b*c^2*z + 12*A*C^2*a^2*b^2*c*z + 16
*A*B^2*a^2*b*c^2*z + 8*A^2*C*a*b^3*c*z - 4*A*B^2*a*b^3*c*z - 4*A*C^2*a*b^4*z - 4*A^3*a*b^2*c^2*z - 16*B^2*C*a^
3*c^2*z + 16*A*C^2*a^3*c^2*z - 16*C^3*a^3*b*c*z + 4*C^3*a^2*b^3*z + 16*A^3*a^2*c^3*z + 2*A^3*C*a^2*b*c + 4*A*B
^2*C*a^3*c - 2*A^2*C^2*a^3*c + 2*A*C^3*a^3*b - A^2*B^2*a^2*b*c - B^2*C^2*a^3*b - A^2*C^2*a^2*b^2 - A^4*a^2*c^2
 - B^4*a^3*c - C^4*a^4, z, k)*x*(8*b^3*c^4 - 32*a*b*c^5))/c^2) + (8*A*B*a^2*c^3 - 4*B*C*a^2*b*c^2)/c^2 + (x*(2
*C^2*b^5 + 2*B^2*b^4*c + 2*A^2*b^3*c^2 + 4*B^2*a^2*c^3 - 4*A*C*b^4*c - 8*A*C*a^2*c^3 - 10*A^2*a*b*c^3 - 10*C^2
*a*b^3*c - 8*B^2*a*b^2*c^2 + 6*C^2*a^2*b*c^2 + 20*A*C*a*b^2*c^2))/c^2) - (x*(C^3*a^3*c - C^3*a^2*b^2 + A*C^2*a
*b^3 + A^3*a*b*c^2 - A*B^2*a^2*c^2 + A^2*C*a^2*c^2 + A*B^2*a*b^2*c - 2*A^2*C*a*b^2*c - B^2*C*a^2*b*c))/c^2)*ro
ot(128*a*b^2*c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2*c^6*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*b^3*c^3*z^3 - 128*A*a*
b^2*c^4*z^3 - 16*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b*c^3*z^2 - 72*A*C*a*b^3*c
^2*z^2 + 8*A*C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 28*B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^3*z^2 + 32*C^2*a*b^4*c
*z^2 - 56*C^2*a^2*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2 - 96*A^2*a^2*c^4*z^2
- 4*C^2*b^6*z^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*a^2*b*c^2*z + 12*A*C^2*a^2*b^2*c*z + 16*A*B^2*a^2*b*c^2*z + 8
*A^2*C*a*b^3*c*z - 4*A*B^2*a*b^3*c*z - 4*A*C^2*a*b^4*z - 4*A^3*a*b^2*c^2*z - 16*B^2*C*a^3*c^2*z + 16*A*C^2*a^3
*c^2*z - 16*C^3*a^3*b*c*z + 4*C^3*a^2*b^3*z + 16*A^3*a^2*c^3*z + 2*A^3*C*a^2*b*c + 4*A*B^2*C*a^3*c - 2*A^2*C^2
*a^3*c + 2*A*C^3*a^3*b - A^2*B^2*a^2*b*c - B^2*C^2*a^3*b - A^2*C^2*a^2*b^2 - A^4*a^2*c^2 - B^4*a^3*c - C^4*a^4
, z, k), k, 1, 4) + (C*x^2)/(2*c) + (B*x)/c